SYNTHESIS OF DITOPIC OLIGOPYRIDINES USING THE SUZUKI COUPLING REACTION

Dirk Sielemann, Andreas Winter, and Nikolaus Risch*

Chemistry Department, Faculty of Science, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany, e-mail: nikolaus.risch@upb.de

Abstract

The synthesis of various bridged oligopyridines using the Suzuki cross-coupling reaction is reported. It is shown that these ditopic derivatives are versatile ligands for complexation reactions with diverse metal ions, such as $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$.

The assembly of metal centers covalently linked in supramolecular structures has been the object of several investigations in the past few years. Especially oligopyridine derivatives, which can be used for the preparation of luminescent and redoxactive polynuclear metal complexes, have received broad attention. ${ }^{1-6}$ Energy- and/or electron transfer processes can be induced by light in these systems. A variety of potential applications such as artificial photosynthesis, ${ }^{7}$ photocatalysis, ${ }^{8}$ photovoltaic cells ${ }^{9}$ are beginning to emerge from this new field of research.

In view of these attractive applications we are interested in simple synthetic methods for the synthesis of bridged oligopyridines bearing 2,2'-bipyridine or $2,2^{\prime}: 6^{\prime} 2^{\prime \prime}$ '-terpyridine subunits. Our studies in the field of ternary iminium salts have led to the development of highly efficient one pot procedures yielding a wide range of functionalized rigid biypridines and terpyridines which are well suited for $\operatorname{Pd}(0)$-catalyzed coupling reactions. ${ }^{10-14}$

In our first attempts to prepare bridged ditopic ligands we have chosen the Suzuki cross-coupling reaction. ${ }^{15}$ Previously, this method has been utilized by Sauvage for the synthesis of bridged oligopyridines. ${ }^{16}$ A mixture of benzene-1,4-diboronic acid (3), two equivalents of the corresponding substituted bi- or terpyridines (1) or (2) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5-10 \% \mathrm{~mol})$ in a biphasic solution (toluene, $\mathrm{MeOH}, 2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$) is refluxed for $16-48 \mathrm{~h}$ (Scheme 1). Work-up and flash column chromatography affords the bridged ligands (4) and (5) in good yields (Table 1, Table 2). ${ }^{16}$

Scheme 1

Table 1. Synthesis of para-linked oligopyridines (4).

entry	R 1	ditopic oligopyridine (4)	reaction time yield
4a			$\begin{aligned} & 48 \mathrm{~h} \\ & 52 \% \end{aligned}$
4b			$\begin{aligned} & 48 \mathrm{~h} \\ & 99 \% \end{aligned}$
4c			$\begin{aligned} & 24 \mathrm{~h} \\ & 92 \% \end{aligned}$
4d			$\begin{aligned} & 24 \mathrm{~h} \\ & 58 \% \end{aligned}$

$4 e$

Table 2. Synthesis of meta-linked oligopyridines (5).

entry	R 2	ditopic oligopyridine (5)	reaction time yield
5 a			$\begin{aligned} & 18 \mathrm{~h} \\ & 43 \% \end{aligned}$
5b			$\begin{aligned} & 24 \mathrm{~h} \\ & 99 \% \end{aligned}$
5c			$\begin{gathered} 48 \mathrm{~h}^{\mathrm{a}} \\ 34 \% \end{gathered}$

a) In the case of $\mathbf{5 c}$ a modified procedure according to Snieckus was applied (DME/EtOH, $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$). ${ }^{17}$

Recently, we have reported on the selective preparation of U-shaped terpyridines, such as $\mathbf{1 a}$ and 2a, and their use as tritopic ligands in the formation of novel $\mathrm{Pt}(\mathrm{II})$-complexes. ${ }^{13}$ Employing the protocol developed by Lowe ${ }^{18}$ we have synthesized the binuclear complexes (6) and (7) (Figure 1). Binuclear platinum(II) complexes are known to possess interesting photophysical properties. ${ }^{19}$

Figure 1. Binuclear $\operatorname{Pt}(\mathrm{II})$-complexes (6) and (7).

Furthermore, the bipyridine-type ligands (5b) and (5c) are well suited for synthesis of binuclear $\mathrm{Ru}(\mathrm{II})$-complexes (8) and (5) (Figure 2). ${ }^{17}$ The synthesis has been carried out by a modification of Meyer's protocol. ${ }^{20-21}$

Figure 2. Binuclear Ru(II)-complexes (8) and (9).

EXPERIMENTAL

All reagents were purchased from commercial sources and used without further purification unless specified. All solvents were dried and distilled according to standard procedures and stored under argon. Chromatographic separation was performed on aluminum oxide (neutral, Akt. III, Fa. Macherey \& Nagel, $0.063-0.200 \mathrm{~nm}$). Melting points were obtained on a Büchi SMP-20 mp apparatus and are uncorrected.

IR spectra were measured on a Nicolet 510 P FT-IR spectrophotometer. All NMR spectra were recorded on a Bruker ARX 200 instrument at $200 \mathrm{MHz}\left({ }^{1} \mathrm{H} N \mathrm{NR}\right)$ and $50 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR); chemical shifts are reported in ppm relative to TMS. MS was carried out using a Finnigan MAT 8230 (FAB-MS, m-nitrobenzyl alcohol matrix) or a Micromass Quattro LCZ apparatus (electrospray, acetonitrile, 10^{-4} $\mathrm{mol} / \mathrm{L})$. Elemental analyses were obtained on a Perkin-Elmer M240 analyzer. UV spectra were measured on a Shimadzu UV-2101 PC spectrophotometer (acetonitrile, $10^{-5} \mathrm{~mol} / \mathrm{L}$). Bi - and terpyridine derivatives (1) and (2) were synthesized by procedures known to the literature. ${ }^{22-24}$

General procedure for the Suzuki cross-coupling reaction. ${ }^{24}$ To a stirred solution of the bromophenyl-substituted bi- or terpyridine (1) or (2) (1.0 mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(58 \mathrm{mg}, 0.05 \mathrm{mmol})$ in toluene (7 mL) under an atmosphere of argon was added an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 1 \mathrm{~mL}, 2$ mmol) and benzene-1,4-diboronic acid (3) ($83 \mathrm{mg}, 0.5 \mathrm{mmol}$) in methanol (7 mL). The vigorously stirred mixture was refluxed for $16-48 \mathrm{~h}$, then cooled, and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 20 \mathrm{~mL})$ containing 1 mL of a concentrated NH_{3} solution. The organic layer was separated and the residual aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated to dryness. Chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $50: 1)$ yielded the pure products.

4,4’'-Di-(5,6,8,9-tetrahydroquino[8,7-b][1,10]phenanthrolin-7-yl)-[1,1’;4',1'’]terphenyl
Terpyridine (1a) ($252 \mathrm{mg}, 0.57 \mathrm{mmol}$) and $\mathbf{3}(47 \mathrm{mg}, 0.29 \mathrm{mmol})$ afforded $\mathbf{4 a}(118 \mathrm{mg}, 52 \%)$ as a brownish powder, $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1\right)$: $2.72-2.83(\mathrm{~m}, 8 \mathrm{H}), 2.89-3.03(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.55-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.76-7.87(\mathrm{~m}, 4 \mathrm{H})$, 8.54 (d, $\left.{ }^{3} J=4.7 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1$): 25.6 (t), 27.6 (t), 124.3 (d), 127.9 (d), 128.0 (d), 129.5 (d), 136.3 (s$), 136.6$ (d), 140.0 (s$), 140.7$ (s), 148.5 (d), 150.3 (s$), 152.1$ (s). FAB-MS (NBA matrix); $m / z(\%): 797(20)[M+H]^{+}, 307$ (15), 279 (16), 219 (15), 154 (100), 136 (85). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{6}$: C 84.40 H 5.06 N 10.55. Found C 84.45 H 5.09 N 10.43.

4,4’-Di-(7,8,13,14-tetrahydroquino[8,7-k][1,8]phenanthrolin-6-yl)-[1,1';4’,1’]terphenyl
(4b).
Terpyridine ($\mathbf{1 b}$) ($190 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\mathbf{3}(36 \mathrm{mg}, 0.21 \mathrm{mmol})$ afforded $\mathbf{4 b}(159 \mathrm{mg}, 95 \%)$ as brownish powder, $\mathrm{mp}>290{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CF}_{3} \mathrm{OOD}\right): 2.98-3.06(\mathrm{~m}$, $4 \mathrm{H}), 3.17-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.72(\mathrm{~s}, 4 \mathrm{H}), 7.33-7.82(\mathrm{~m}, 12 \mathrm{H}), 7.89-8.02(\mathrm{~m}, 4$ H), $8.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.54-8.64(\mathrm{~m}, 4 \mathrm{H}), 8.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$. FAB-MS (NBA matrix); m / z (\%): 796 (100) M ${ }^{+}, 436$ (49), 356 (98), 281 (48), 207 (41). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{6}$: C 84.40 H 5.06 N 10.55. Found C 84.41 H 5.02 N 10.52.

4,4’'-Di-(5,6-dihydro-[1,10]-phenanthrolin-2-yl)-[1,1';4’,1’’]terphenyl (4c). Bipyridine (1c) (336 mg , 1.00 mmol) and $3(83 \mathrm{mg}, 0.50 \mathrm{mmol})$ afforded $\mathbf{4 c}(271 \mathrm{mg}, 92 \%)$ as an orange-brown solid, $\mathrm{mp}>$ $290{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1$): 2.87-3.03 (m, 8 H), $7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 10 \mathrm{H}), 8.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.70\left(\mathrm{~d},{ }^{3} J=\right.$ $4.65 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 27.4$ (t), 27.8 (t), 121.2 (d), 124.3 (d), 127.0 (d), 127.5 (d), 127.8 (d), 128.0 (d), 133.0 (s), 134.9 (s), 137.2 (d), 138.5 (s), 140.1 (s), 141.3 (s), 148.4 (d), 151.0 (s), 151.7 (s), 156.6 (s). FAB-MS (NBA matrix); m/z (\%): 591 (100) [M+H] ${ }^{+} 281$ (4), 154 (35, 136 (47), 90 (18). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{4}$: C 85.40 H 5.12 N 9.48 . Found C 85.37 H 5.10 N 9.53 .

4,4’'-Di-(9-tert-butyl-5,6-dihydro-[1,10]-phenanthrolin-2-yl)-[1,1’;4’,1’’]terphenyl (4d). Bipyridine (1d) ($382 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $\mathbf{3}(83 \mathrm{mg}, 0.50 \mathrm{mmol})$ afforded $\mathbf{4 d}(199 \mathrm{mg}, 58 \%)$ as a brown powder, mp $>260{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1$): $1.52(\mathrm{~s}, 18 \mathrm{H}), 2.95-3.05$ (m, 4 H), $7.35\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.76-7.84(\mathrm{~m}$, 10 H), 8.29-8.34 (m, 2 H). FAB-MS (NBA matrix); m/z (\%): 702 (98) M ${ }^{+}, 687$ (93), 671 (22), 646 (30), 590 (6), 507 (8), 350 (13), 343 (34). Anal. Calcd for $\mathrm{C}_{50} \mathrm{H}_{46} \mathrm{~N}_{4}$: C 85.43 H 6.60 N 7.97. Found C 85.48 H 6.62 N 8.05 .

4,4’-Di-(5H-cyclopenta[2,1-b3,4-b']phenanthrolin-2-yl-[1,1’;4’,1’’]terphenyl (4e). Bipyridine (1e) ($322 \mathrm{mg}, 1.00 \mathrm{mmol}$) and $3(83 \mathrm{mg}, 0.5 \mathrm{mmol})$ afforded $\mathbf{4 e}(253 \mathrm{mg}, 90 \%$) as a brown powder, $\mathrm{mp}>$ $290{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. FAB-MS (NBA matrix); m/z (\%): 562 (74) M ${ }^{+}, 438$ (30), 396 (65), 320 (100), 281 (19), 244 (40). Anal. Calcd for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{4}$: C 85.38 H 4.66 N 9.96 . Found C 85.31 H 4.64 N, 10.05 .

3,3'’-Di-(5,6,8,9-tetrahydroquino[8,7-b][1,10]phenanthrolin-7-yl)-[1,1’;4',1’’]terphenyl
Terpyridine (2a) ($413 \mathrm{mg}, 0.94 \mathrm{mmol}$) and $3(80 \mathrm{mg}, 0.48 \mathrm{mmol})$ afforded $\mathbf{5 a}(164 \mathrm{mg}, 43 \%)$ as a brownish powder, $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1\right)$: 2.77-2.85 (m, 8 H), 2.91-2.97 (m, 8 H), 7.21-7.29 (m, 6 H), 7.53-7.68 (m, 8 H), 7.72-7.80 (m, 6 H), $8.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): 25.9 (t), 27.8 (t), 123.9 (d), 127.0 (d), 127.5 (d), 128.1 (d), 129.9 (d), 132.8 (s), 133.7 (s), 136.6 (d), 138.3 (s), 140.2 (s), 141.4 (s), 148.0 (s), 149.2 (d), 150.9 (s), 152.6 (s). FAB-MS (NBA matrix); m/z (\%): 797 (8) [M+H] ${ }^{+}, 197$ (15), 154 (18), 1345 (45). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{6}$: C 84.40 H 5.06 N 10.55 . Found C 84.33 H 5.08 N 10.60 .

99 \%), mp $244{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{MeOD}, 20: 1\right): 2.79-2.95(\mathrm{~m}$, $12 \mathrm{H}), 3.63\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.19-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.68(\mathrm{~m}, 10 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.87(\mathrm{~s}, 2$ H), $8.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 26.4(\mathrm{t}), 26.9(\mathrm{t}), 28.3(\mathrm{t})$, 29.2 (t), 123.6 (d), 123.8 (d), 127. 0 (2 d), 127.9 (d), 128.6 (d), 128.9 (d), 131.4 (s), 132.9 (s), 134.6 (s$)$, 135.7 (d), 135.9 (2 d), 140.4 (s), 140.8 (s), 141.0 (s), 141.2 (s), 147.4 (d), 148.6 (d), 151.1 (s), 152.4 (s), 152.9 (s), 156.7 (s). FAB-MS (NBA matrix); $m / z(\%): 797$ (10) [M+H] ${ }^{+}, 795$ (1), 798 (8), 709 (1), 614 (1), 438 (2), 279 (19), 133 (23). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{6}$: C 84.40 H 5.06 N 10.55 . Found C 84.47 H 5.09 N 10.45 .

3,3'’-Di-(5,6-dihydro-[1,10]-phenanthrolin-2-yl)-[1,1';4',1'’]terphenyl (5c). To a stirred solution of bipyridine (2c) $(586 \mathrm{mg}, 1.74 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.13 \mathrm{mmol})$ in DME $(12 \mathrm{~mL})$ under an atmosphere of argon was added an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \mathrm{M}, 5.2 \mathrm{~mL})$ and $3(145 \mathrm{mg}, 0.87$ $\mathrm{mmol})$ in ethanol (2 mL) within 15 min . The vigorously stirred mixture was refluxed for 24 h . After addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(150 \mathrm{mg}, 0.13 \mathrm{mmol})$ the mixture was refluxed for further 24 h . The solvent was evaporated and the residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. The organic phase was seperated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated. ${ }^{17}$ Chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{EtOAc} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 100:1) afforded $5 \mathbf{c}$ ($226 \mathrm{mg}, 34 \%$) as yellow powder, $\mathrm{mp} 142{ }^{\circ} \mathrm{C}$ after recrystallization from methanol. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 2.95-3.11(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.91(\mathrm{~m}, 14 \mathrm{H}) 8.16-8.24(\mathrm{~m}, 2 \mathrm{H})$, $8.39-8.43(\mathrm{~m}, 2 \mathrm{H}), 8.77\left(\mathrm{dd},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 27.7(\mathrm{t}), 28.0(\mathrm{t}), 120.9$ (d), 123.9 (d), 125.8 (d), 126.6 (d), 127.8 (d), 128.0 (d), 129.6 (d), 133.4 (s), 134.8 (s), 136.1 (d), 137.1 (d), 140.5 (s), 140.7 (s), 141.4 (s$), 149.0$ (d), 152.1 (s), 152.5 (s$), 156.4$ (s). FAB-MS (NBA matrix); m / z (\%): 591 (100) $[\mathrm{M}+\mathrm{H}]^{+}, 207$ (15), 154 (52), 136 (57). Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{~N}_{4}$: C 85.40 H 5.12 N 9.48. Found C 85.46 H 5.17 N 9.59 .

General procedure for the preparation of terpyridine-platinum complexes. ${ }^{23,24}$ To a suspension of diiodo(cycloocta-1,5-diene)platinum ($55 \mathrm{mg}, 0.10 \mathrm{mmol}$) in acetone (1 mL) was added silver tetrafluoroborate ($40 \mathrm{mg}, 0.21 \mathrm{mmol}$). The resulting mixture was stirred at rt until a colorless solution was obtained ($20-30 \mathrm{~min}$). The AgI precipitate was then removed by filtration. The solution was added to a suspension of a terpyridine $(0.08 \mathrm{mmol})$ in acetonitrile $(0.5 \mathrm{~mL})$ and the reaction mixture was stirred at rt for another 30 min . The acetonitrile complex precipitating was collected by centrifugation, suspended in acetonitrile (1 mL) and treated with 4-picoline ($20 \mu \mathrm{~L}$) for 30 min to give a clear solution. The picoline complex was precipitated by addition of ether to give the crude complex, which was recrystallized from acetonitrile by slow diffusion of ether vapor.
[$\left.\left.\mathbf{P t}_{\mathbf{2}} \mathbf{(4 a) (4 - p i c o l i n e}\right)_{2}\right]\left[\mathbf{B F}_{4}\right]_{4} \mathbf{(6) .} \mathrm{PtCODI}_{2}(55 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{AgBF}_{4}(42 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{4 a}(32 \mathrm{mg}$, 0.04 mmol) and 4-picoline ($25 \mu \mathrm{~L}$) afforded 6 as a yellow solid ($51 \mathrm{mg}, 74 \%$), $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after recrystallization from acetonitrile/ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 2.69(\mathrm{~s}, 6 \mathrm{H}), 3.01-3.12(\mathrm{~m}, 8 \mathrm{H}), 3.29-3.34$ (m, 8 H), 7.53-7.83 (m, 16 H), 7.98-8.03 (m, 8 H$), 8.17\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.88\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 4 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): 21.0 (q), 24.1 (t), 26.1 (t$), 127.9$ (d), 128.1 (d), 129.1 (d), 129.2 (d), 129.3 (d), 132.6 (s$), 137.1$ (s), 138.9 (s$), 139.7$ (s$), 141.6$ (s$), 142.9$ (d), 149.5 (s$), 150.3$ (d), 152.1 (d), 153.6 (s$), 155.3$ (s$),$ 155.7 (s). ES-MS; m/z: $629\left[\mathrm{C}_{62} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{Pt}+2 \mathrm{BF}_{4}\right]^{2+}, 486\left[\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Pt}_{2}+\mathrm{BF}_{4}\right]^{3+}, 343\left[\mathrm{C}_{68} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{Pt}_{2}\right]^{4+}$. UV/VIS; $\lambda_{\max }(\varepsilon): 418$ (19200), 396 (23700), 350 (31500), 317 (69200), 301 (67300), 2667 (45900), 238 (42900).
[$\mathbf{P t}_{\mathbf{2}} \mathbf{(5 a)}$ (4-picoline) $\mathbf{2}_{\mathbf{2}}\left[\mathbf{B F}_{4}\right]_{\mathbf{4}} \mathbf{(7)} . \mathrm{PtCODI}_{2}(55 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{AgBF}_{4}(42 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{4 a}(32 \mathrm{mg}$, 0.04 mmol) and 4-picoline ($25 \mu \mathrm{~L}$) afforded 6 as a yellow solid ($49 \mathrm{mg}, 71 \%$), $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after recrystallization from acetonitrile/ether. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: $2.69(\mathrm{~s}, 6 \mathrm{H}), 3.03-3.12(\mathrm{~m}, 8 \mathrm{H}), 3.25-3.34$ (m, 8 H), $7.35-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.88(\mathrm{~m}, 14 \mathrm{H}), 7.89-7.95(\mathrm{~m}, 8 \mathrm{H}), 8.16\left(\mathrm{~d},{ }^{3} J=8.5 \mathrm{~Hz}, 4 \mathrm{H}\right), 8.87(\mathrm{~d}$, $\left.{ }^{3} J=6.5 \mathrm{~Hz}, 4 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): 21.0 (q), 24.1 (t$), 26.1$ (t$), 126.6$ (d), 127.5 (d), 128.2 (d), 129.1 (d), 129.3 (d), 130.4 (d), 134.2 (s), 137.2 (s), 138.9 (s), 141.5 (s), 142.9 (d), 149.5 (s), 150.3 (d), 152.1 (d), 153.8 (s), 155.3 (s), 155.6 (s). ES-MS; m/z: $629\left[\mathrm{C}_{62} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{Pt}+2 \mathrm{BF}_{4}\right]^{2+}, 583\left[\mathrm{C}_{56} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{Pt}+2 \mathrm{BF}_{4}\right]^{2+}$. UV/VIS; $\lambda_{\max }(\varepsilon): 419$ (10200), 397 (8400), 350 (15500), 317 (58700), 299 (58600), 267 (57500), 240 (42600).
cis-Ru(bpy) $\mathbf{2}_{2} \mathrm{Cl}_{2} \cdot 2 \mathbf{H}_{2} \mathbf{O} .{ }^{25}$ A mixture of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad(3.9 \mathrm{~g}, 14.9 \mathrm{mmol}), 2: 2^{\prime}$-bipyridine ($4.7 \mathrm{~g}, 30$ $\mathrm{mmol})$ and $\mathrm{LiCl}(4.2 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dry DMF $(2 \mathrm{~mL})$ was refluxed for 8 h under vigorous stirring. After cooling acetone (125 mL) was added and the reaction mixture was kept at $0^{\circ} \mathrm{C}$ for 12 h . The green-black precipitate was filtered off, washed with water ($3 \times 12 \mathrm{~mL}$) and ether ($3 \times 12 \mathrm{~mL}$) and dried in vacuo to give the precursor complex ($2.98 \mathrm{~g}, 48 \%$).

General procedure for the preparation of bipyridine-ruthenium complexes. ${ }^{25-26}$ A mixture of cis- $\mathrm{Ru}(\mathrm{bpy}){ }_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{mmol})$ and the ditopic ligand (0.2 mmol) was refluxed in ethanol and water (7:2, 15 mL) for 24 h . After cooling to rt $2 / 3$ of the solvent were evaporated. The $\mathrm{Ru}(\mathrm{II})$-complex was obtained by the addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ (4.5 eq .) in water (3 mL). The crude product was filtered off and purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (toluene/acetonitrile, 1:1) followed by crystallization from the same solvents.
$\left[\mathbf{R u}_{2}(\mathbf{b p y})_{4}(\mathbf{5 b})\right]\left[\mathbf{P F}_{6}\right]_{4}$ (8). Ditopic ligand (5b) ($135 \mathrm{mg}, 0.17 \mathrm{mmol}$), cis- $\mathrm{Ru}(\mathrm{bpy})_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(200 \mathrm{mg}$, $0.39 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(116 \mathrm{mg}, 0.71 \mathrm{mmol})$ afforded $\mathbf{8}(201 \mathrm{mg}, 53 \%)$ as a red solid, $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after
recrystallization from acetonitrile/toluene. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: 2.17-2.46(m, 4 H$), 2.68-2.90(\mathrm{~m}, 4 \mathrm{H})$, 3.25-3.29 (m, 4 H), 3.96-4.07 (m, 4 H), 5.99-6.02 (m, 1 H), 6.29-6.36 (m, 1 H$), 6.58-6.68(\mathrm{~m}, 1 \mathrm{H})$, 6.84-6.92 (m, 3 H), 7.07-7.72 (m, 30 H), 7.87-7.97 (m, 6 H), 8.08-8.51 (m, 12 H), 8.72-8.74 (m, 2 H). FAB-MS (NBA matrix); $m / z(\%): 2059$ (1) $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 1912(1)\left[\mathrm{M}-2 \mathrm{PF}_{6}-2 \mathrm{H}\right]^{+}, 1767$ (1) $\left[\mathrm{M}-3 \mathrm{PF}_{6}-\right.$ $2 \mathrm{H}]^{+}, 486$ (1), 1307 (1), 998 (10), 968 (13), 822 (8), 642 (7), 537 (4), 460 (12), 362 (11), 279 (15), 154 (100). Anal. Calcd for $\mathrm{C}_{96} \mathrm{H}_{72} \mathrm{~N}_{14} \mathrm{~F}_{24} \mathrm{P}_{4} \mathrm{Ru}_{2}$: C 52.32 H 3.29 N 8.90 . Found C 52.75 H 3.76 N 8.70. UV/VIS; $\lambda_{\max }(\varepsilon): 456$ (29700), 290 (119700), 239 (40000).
[$\left.\mathbf{R u}_{2}(\mathbf{b p y})_{\mathbf{4}}(5 \mathbf{5})\right]\left[\mathbf{P F}_{6}\right]_{4}$ (9). Ditopic ligand (5c) $(45 \mathrm{mg}, 0.06 \mathrm{mmol})$, cis-Ru(bpy) $\mathbf{2}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(62 \mathrm{mg}, 0.12$ $\mathrm{mg})$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}(41 \mathrm{mg}, 0.25 \mathrm{mmol})$ afforded $9(46 \mathrm{mg}, 38 \%)$ as an orange-red solid, $\mathrm{mp}>250{ }^{\circ} \mathrm{C}$ after recrystallization from acetonitrile/toluene. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: 3.31-3.42 (m, 8 H$), 6.84-6.93(\mathrm{~m}, 4 \mathrm{H})$, 7.14-7.47 (m, 23 H), 7.53-7.78 (m, 11 H), 7.82-8.16 (m, 12 H), 8.31-8.56 (m, 4 H). FAB-MS (NBA matrix); m / z (\%): 1851 (99) $\left[\mathrm{M}-\mathrm{PF}_{6}-2 \mathrm{H}\right]^{+}$, 1707 (98) [M-2 $\left.\mathrm{PF}_{6}-\mathrm{H}\right]^{+}$). ES-MS; m/z: 521 $\left[\mathrm{C}_{82} \mathrm{H}_{62} \mathrm{~N}_{12} \mathrm{Ru}_{2}+\mathrm{PF}_{6}\right]^{3+}, 354\left[\mathrm{C}_{82} \mathrm{H}_{62} \mathrm{~N}_{12} \mathrm{Ru}_{2}\right]^{4+}$. Anal. Calcd for $\mathrm{C}_{82} \mathrm{H}_{62} \mathrm{~N}_{12} \mathrm{~F}_{24} \mathrm{P}_{4} \mathrm{Ru}_{2}$: C 49.31 H 3.13 N 98.41. Found C 49.03 H 3.12 N 8.75. UV/VIS; $\lambda_{\max }(\varepsilon)$: 453 (14800), 289 (81500), 235 (19900).

ACKNOWLEDGEMENTS

We would like to thank the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft and the Grünenthal $G m b H$ for their financial support of this project.

REFERENCES

1. R. Ziessel, Chem. Edu., 1997, 74, 673.
2. J.-P. Collin, P. Gavina, V. Heitz, and J.-P. Sauvage, Eur. J. Inorg. Chem., 1998, 673.
3. A. Harrimann and R. Ziessel, Chem. Commun., 1996, 1707.
4. J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, and L. Flamigni, Chem. Rev., 1994, 94, 993.
5. U. S. Schubert and C. Eschbaumer, Angew. Chem., Int. Ed. Engl., 2002, 41, 2892; Angew Chem. 2002, 114, 3016.
6. L. Chouai, F. Wu, Y. Jang, and R. P. Thummel, Eur. J. Org. Chem., 2003, 2774.
7. D. Gust and T. A. Moore, Science, 1989, 244, 35.
8. R. Ziessel, 'Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds', ed. by M. Kuppustramy and K. Kalyanasundaram, Kluwer Academic Publisher, Dordrecht, 1993.
9. B. O'Regan and M. Grätzel, Nature, 1991, 353, 737.
10. R. Keuper, N. Risch, U. Flörke, and H.-J. Haupt, Liebigs Ann. Chem., 1996, 705.
11. R. Keuper and N. Risch, Liebigs Ann. Chem., 1996, 716.
12. R. Keuper and N. Risch, J. Prakt. Chem., 1998, 340, 424.
13. D. Sielemann, R. Keuper, and N. Risch, Eur. J. Org. Chem., 2000, 543.
14. D. Sielemann, A. Winter, U. Flörke, and N. Risch, Org. Biomol. Chem., 2004, 2, 863.
15. N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457.
16. M. Beley, S. Chodorowski, J.-P. Collin, and J.-P. Sauvage, Tetrahedron Lett., 1993, 34, 2933.
17. C. M. Unrau, M. G. Campbell, and V. Snieckus, Tetrahedron Lett., 1992, 33, 2773.
18. G. Lowe and T. Vilaivan, J. Chem. Res. (S), 1996, 386.
19. H.-K. Yip, L.-K. Cheng, K.-K. Cheung, and C.-M. Che, J. Chem. Soc., Dalton Trans., 1993, 2933.
20. B. P. Sullivan, D. J. Salmon, and T. J. Meyer, Inorg. Chem., 1978, 17, 3334.
21. R. Keuper and N. Risch, Z. Naturforsch., 1995, 50b, 1115.
22. R. Keuper and N. Risch, Eur. J. Org. Chem., 1998, 2609.
23. D. Sielemann, A. Winter, U. Flörke, and N. Risch, Org. Biomol. Chem., 2004, 2, 863.
24. D. Sielemann, 'Synthese polycyclischer Pyridinderivate', PhD Thesis, Universität-GH Paderborn, 2000.
25. B. P. Sullivan, D. J. Salmon, and T. J. Meyer, Inorg. Chem., 1980, 17, 3334.
26. N. Risch and R. Keuper, Z. Naturforsch., 1995, 50b, 1115.
